
Copied from: AACE Proceedings of EDMEDIA 2004. Edited by L. Cantoni & C. McLoughlin June 2126, 2004; Lugano, Switzerland 

 2040

My Webpage can Speak Many Languages

Tomasz Müldner, Fei Wang and Darcy Benoit
Jodrey School of Computer Science, Acadia University

Wolfville, NS, Canada B4P 2R6
Email: {tomasz.muldner,056330w,darcy.benoit}@acadiau.ca

Abstract: Growing globalization generates interest in internationalized software that can
be localized to various languages. This paper describes a system that can be used to
create an internationalized website which shows the Curriculum Vitae (CV) for a faculty
member (creator). The final product is a website that “can speak many languages”, i.e. a
website that will initially be displayed in one language but will have the option to be
displayed in a variety of languages chosen by the creator. In addition, the creator is able
to specify one or more selections of data to be shown (for example, only journal
publications), and one or more of formats these data are to be rendered in (such as HTML
or PDF).

1. Introduction

In the past, most software programs could only “speak one language”. For example, software developed in the UK
could speak English, while the same software developed in China could only speak Chinese. (In this paper, a
language means the natural language used in the Human-Computer Interface (HCI). Unless it is clear from the
context, we always say “a programming language” when we refer to a language used for programming.) Therefore,
two or more versions of the same program that differ in HCI language might require completely different
implementations, resulting in error-prone duplications of the original code. This situation was unacceptable for two
reasons. Firstly, there are many multi-language countries, such as Canada, where English and French are two official
languages. Secondly, with growing globalization, products are often developed in one country and shipped to
several other countries. This forced software developers to rethink the software development process and tackle the
issue of internationalization. Internationalization of a product means that the product can be adapted to various
languages without making any changes to the architecture. Localization of the internationalized product refers to the
adaptation of this product to a specific locale, which describes the language. For example, an internationalized Java
calendar that has been localized to French will show dates in the format used in France. Due to the length of the
terms internationalization and localization, the short, mnemonic terms of I18N and L10N are used respectively. The
shortened terms are names based on the number of letters between the first and last letter of each word.
 Product internationalization is difficult because it goes beyond simple functional suitability of a program and
considers the many facets of HCI language. Various languages use different alphabets and scripts, spacing rules,
directions, date and currency formats, sort orders, etc. Most programs have a Graphical User Interface (GUI) that is
built with standard widgets, such as menus and dialog boxes. Localized versions of internationalized programs not
only have to provide appropriate translations of interface menus and prompts, but the standard widgets must be able
to handle all different HCI languages properly. In particular, widgets must be able to handle issues such as word
length, word positioning, font differences and other such items. Such a “dynamic” interface requires that the
implementation of the GUI can no longer be hard coded in the source code of the program; instead it must be
parameterized to allow different versions of different languages to be plugged in without modifications to the
program architecture.
 Interest in internationalization is growing rapidly, with more applications being internationalized regularly.
One example of this is the Hotel Reservation System, see HRS (2003), where the user can choose one of 25
available languages. Many companies, such as EXCEL Translations (2003) specialize in internationalizing existing
applications. Several programming languages and APIs provide support for internationalization, such as the Java
JDK 1.4, see Java (2001), JSPs, see Seshadi (2003) and NetBeans from SUN, see NetBeans (2003). However, there
are few internationalized personal web pages or educational applications, with some exceptions such as the Mozilla,
see Mozilla (1998) and Opera, see Opera (2003) web browsers. Both browsers have a core binary that is able to
function by loading a separate file that contains the appropriate information for a localized interface. They each
provide language files for over 20 different languages, allowing for an easy switch in the interface language. Finally,

Copied from: AACE Proceedings of EDMEDIA 2004. Edited by L. Cantoni & C. McLoughlin June 2126, 2004; Lugano, Switzerland 

 2041

Webmail, see Webmail (2003) is a popular email client running from any browser, whose user can choose one of
over 20 languages.
 Internationalization can be applied to the existing software or to software presently under development. In this
paper, we describe the internationalization process applied to the development of a website. As a specific example of
this general process, we describe the internationalization process using a system called Internationalized Faculty
Website (IFW). This system can be used to create an internationalized website which shows the Curriculum Vitae
(CV) for a faculty member. The design of IFW uses Separation Of Concerns (SOC) to separate tasks that require
different types of technical expertise. A user of IFW (the creator of the webpage) does not need to have any
technical background and need only follow a series of GUIs in a host language such as English. The English-
speaking creator enters her or his CV data, selects one or more languages for the website to be displayed, and then
forwards the project to the IFW administrator. The administrator is responsible for finding translators for the task,
verifying the completed translation and making the final product available to the creator. The final product is a
website that “can speak many languages”, i.e. a website that will initially be displayed in one language but will have
the option to be displayed in a variety of languages chosen by the creator of the website. In addition, the creator is
able to specify one or more selections of data will be shown (for example, only journal publications), and one or
more of selections of formats these data are to be rendered in (such as HTML or PDF). All translations are
permanently stored and can be reused in future translation tasks. The implementation of IFW uses various recently
developed software tools based on Java and XML, such as JAXB, versioning of XML documents, XML databases
and relational databases with XML support.
 This paper is organized as follows. Section 2 briefly describes some related work, and then Section 3
describes the functionality and implementation of the Internationalized Faculty Website. Finally, Section 4 provides
conclusions and describes the future work.

2. Related Work

 In this section, we describe major issues related to the internationalization process and the translation process,
and the support for the internationalization given by XML and Java.

2.1 Major Issues

 Internationalization of a system requires the identification of all data that can be shown to the user and may
have different values under different locales. These data, known as resources, include user messages, page headers
and trailers, button labels, etc. In addition, there may be many specific formatting problems. For example, translated
strings can vary significantly in size. Consider the example borrowed from Raetzmann & de Young (2003), in which
the English text “Authorized User List” consists of 21 characters, while the corresponding German text consists of
32 characters: “Liste der berechtigten Benutzer”. Text sizes can cause other problems, such as the limited space
associated with a box label. Extra characters should not be displayed to the left of the box, but should be displayed
above the box. Standard formatting issues such as date and currency formats must also be considered. For a
description of software that provides some tools to support this kind of formatting see Section 2.3.

2.2 Translation Process

 At the time of writing this paper, Google, see Google (2003) and other sites provide English translation of
small text fragments or entire Web pages between several languages. A user may choose to set the Google
homepage to one of more than 100 interface languages. Microsoft Word 2002 is able to perform automatic
translation between Chinese, English, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish.
Figure 1 shows several Microsoft Word translations of the English sentence “The interest for internationalization
is growing rapidly.” We also show a translation back to English for each translated sentence.

Copied from: AACE Proceedings of EDMEDIA 2004. Edited by L. Cantoni & C. McLoughlin June 2126, 2004; Lugano, Switzerland 

 2042

L'intérêt pour l'internationalisation se développe rapidement
The interest for internationalization develops quickly
Das Interesse für Internationalisierung wächst schnell.
The interest in internationalization grows fast.
兴趣为国际化迅速显现出
The interest rapidly appears for the internationalization
Figure 1: Microsoft Word translations

 Using a free upgrade from WorldLingo, see WordLingo (2003) it is possible to translate between many other
languages. While not perfect, these translations can help the translator to perform the required task. Repeated
translations of the same string should be avoided in order to make the translation process more efficient. For
example, translations of common phrases such as “Press any key to continue” should be stored for future reuse. It is
expected that as translation systems become more accurate, we will be able to automate much of the translation
process.
 Computer-assisted translation uses Translation Memory (TM) systems that typically consist of a translator
module, an editor module, and a database of terms. TM software stores language segments translated by translator in
a database for future reuse. Translators working on text segments can invoke fuzzy searches for these segments and
use the results retrieved from the database. Some well known companies offering TM systems are Déjà Vu (2003),
the Translator's Workbench from Trados (2003), and the STAR Transit (2003). TM software typically uses the
Translation Memory eXchange (TMX) format, which is a standardized XML document type for storing collections
of segments in multiple languages. For more information on TMX, see Lisa (2003).
 Using TM software for translations has both advantages and drawbacks. Firstly, TM software views the
source text as a collection of text units called segments. Segments may range in size from simple text strings to
paragraphs. The technique used to break up the text into segments is called segmentation. Segmentation may remove
the context in which the text segment appeared, resulting in an incorrect translation. An example in Savourel (2001)
shows that the English word “Help” translates to two different French words depending on the context in which the
word appears. The common solution to the context problem is to use a verification phase in which the translator
reads, verifies and possibly corrects the translation. The second problem with TM systems is that they are expensive,
both in terms of the price of the software and the need to hire specialized personal able to use these systems. (More
on automatic translation in Dennett (1995)).

2.3 XML and Internationalization

There are many advantages of using XML, see XML (2003) data for internationalization:
1) support for Unicode
2) Separation Of Concerns (SOC): describe content rather than formatting
3) ease of converting to various formats, including HTML, VoiceXML, etc.
4) support for mixing several languages
5) help to avoid repetitions by storing in, and retrieving from, databases
6) support for specifying translatable text

 Below, we elaborate on these advantages. Re 1). XML supports ISO-10464 Unicode, see Unicode (2003) and
can handle all languages in the world. By default, an XML document is using UTF-8 encoding, but it can be
changed to other encodings; for example:
<?xml version=’1.0’ encoding=’utf-16’ ?>
Re 2) and 3). XML data only describe the context, and there are many examples of XSLT templates, Fitzgerald
(2003) used to convert XML to other formats for storage and rendering, such as HTML; for example see
OmniFormat (2003).
Re: 4). An XML document with multiple languages may look as follows:
<p xml:lang=”pl”> noc </p>
<p xml:lang=”de”> nacht </p>
Above, the xml:lang attribute is a standard attribute, whose values specifies the current language. The
corresponding XPath, see XPath (2003) function is called lang(), and it can be used in XSLT templates. An example
of such a function would be to recover all elements written in Polish. The reason this feature is useful is that some
text may appear in English and another language, such as publication titles. Re 5). At the time of writing this paper,

Copied from: AACE Proceedings of EDMEDIA 2004. Edited by L. Cantoni & C. McLoughlin June 2126, 2004; Lugano, Switzerland 

 2043

there are few full-fledge XML databases. However, most existing databases provide tools to extract XML from
relational tables (see Section 3.4.1). Re 6). The translatable text can be specified in several ways. First, there may be
special tags to specify elements that are translatable, but this is difficult to do for complex elements, see XML FAQ
(2003). Second, all translatable text may be external to XML documents, and referenced using entities or XInclude.
The problem with this approach is that entities create a runtime overload, and as of now the support for XInclude is
not readily available. In our system, see Section 3, we store data in a database. For more guidelines for creating
XML documents for internationalization see XML FAQ (2003) and Rajgopalan (2003).

2.4 Java Support for Internationalization

 Java provides strong support for internationalization, see SUN (2002), and Deitsch & Czarnecki (2001). In the
Java SDK 2, internationalization resources are grouped into resource bundles. The internationalized Java program
can be then use resource bundles to read the data for the current locale. Displaying data for a different local involves
only specifying the locale; no change is required for the code of the program. If you use resource bundles and
decided to use TMX , you will have to implement a conversion from bundles to TMX, see Itagaki (2000).

2.5 Dynamic and Static Content for Internationalization

 In general, websites have static, dynamic or mixed content. Dynamic content has many advantages, allowing
for content to be retrieved from a database for display. Dynamic content also allows for the separation of
presentation from data and logic. Data can be displayed selectively with different renderings, depending on the data.
Various technologies exist that support dynamic website content, such as Java Server Page, JSP, see Hall (2001).
Resource bundles described in the previous section can also be used with JSP, see Seshadri, G. (2000). Resources
are retrieved from the bundle during the initialization of JSPs and stored in the session of these pages. In addition,
you can specify in JSPs the required Unicode encoding.
 In the next section, we describe the functionality and implementation of the Internationalized Websites.

3. Internationalized Websites

3.1 Introduction

 This section describes the internationalization process applied to the development of a website using the IFW
system. The system is used to take Curriculum Vitae (CV) and produce a webpage that is able to “speak many
languages”.
 The interface language is the HCI language that appears in IFW’s GUIs. The current version of our system
uses English as an interface language. The language in which the CV data are entered does not have to be the same
as the interface language. The primary language is the default language selected for the final product. For example,
if the primary language is Spanish, then initial access to the website will be in Spanish. The website will also be
available in the other languages selected by the creator when using the IFW system.
 After the creator entered her or his CV data, they select various options to affect the creation of the final
product. These options include the selection of:
• the primary display language for the website
• one or more secondary languages available for display
• data to be shown (all data, only journal publications, etc.)
• formats in which data can be rendered (HTML, PDF, PostScript, etc.).
 As an example, the website may be initially displayed using Polish as the primary language, allowing the user
to switch to one of these secondary languages: Chinese, English, German or French. In addition, the user can display
all the data, or only the journal and conference publications, and select HTML, PDF or PostScript as the format in
which these data can be rendered. It should be noted that the product of IFW can be run off any kind of a Web
server. Figure 2 shows one of the GUIs used by the creator to select a source language, one or more target languages
and one or more rendering formats.

Copied from: AACE Proceedings of EDMEDIA 2004. Edited by L. Cantoni & C. McLoughlin June 2126, 2004; Lugano, Switzerland 

 2044

Figure 2. GUI used by the creator

 The creator of the website does not have to perform any tasks which require technical background, as these
tasks are delegated to other IFW users, as described in the next section.

3.2 Users of IFW

The design of IFW uses SOC to separate tasks that require different type of technical expertise. There are four kinds
of IFW users:
• creators (enter CV data, select formats, etc.)
• administrators (maintain accounts, forward documents, etc.)
• translators (translate documents submitted by administrators)
• verifiers (verify translations submitted by administrators)

 IFW is a distributed system, consisting of a central server (IFW server) and users accessing the IFW server
through the Internet. Any browser can be used to access the IFW system. Users must have accounts on the IFW
server. Administrators of the IFW server create, modify and delete accounts for all users and maintain repositories of
available translators and verifiers. There are two possible approaches to translation of documents. Single source
translation involves selecting one source language and translating from the source language to other languages.
Multiple source translation involves translating text from any one language to any other language. The former
approach requires availability of translators from a single source language to many other languages, while with the
latter approach it may be easier to find required translators. We use multiple source translation for this reason. For
example, with multiple source translation, one translator may translate a document from English to French, and then
another translator can translate the French version into German. This allows us to translate a document from English
to German even if we do not have a translator that can do the direct translation.
 In order to aid in the process of selecting translators, each translator has a profile that lists pairs of languages;
each language pair consists of the source language (a language to translate from) and the target language (the
language to translate to). A translator’s profile may include (English, French) and (English, German), while another
translator’s profile may include (French, Polish) and (Polish, French). We do not assume that the ability of
translating from one language to another is reflexive. Similarly, each verifier has a profile listing all pairs of
languages that this verifier can verify translations from and to. Administrators use repositories of translators and
verifiers to determine the languages to include on the list of IFW-available languages. In the above example, IFW-
available languages for English are French, German and Polish. For French, the only IFW-available language is
Polish. The verifier is able to accept a translation (possibly with minor corrections), or reject it. Note that all data,
their translations and status (new, translated or accepted) are permanently stored on the IFW server. The translators
and verifiers can re-use previously accepted translations. Translators and verifiers can request accepted translations
of a standard CV e.g. from English to Polish translations of just expertise keywords from German to Chinese. The
workflow for creating internationalized website can be summarized as follows:

1. The creator asks the administrator to create an account for her or him.
2. The creator uses the account to access the IFW server and enters her or his CV data.
3. The creator selects one or more languages in which this website can be displayed and forwards the request to

the administrator. Also, the creator selects data to be shown and formats for display.
4. The administrator submits translations tasks to translators.
5. When any translation is completed, it is returned to the administrator who forwards it to the verifier.

Copied from: AACE Proceedings of EDMEDIA 2004. Edited by L. Cantoni & C. McLoughlin June 2126, 2004; Lugano, Switzerland 

 2045

6. Once all translations are verified, the creator is notified and asked to choose one or more final products, with a
specified primary language, choices of secondary languages, choices of data to be shown, and formats in which
data are can be rendered.

 Figure 3 shows the workflow for creating the internationalized website. The administrator may reject a request
to create an internationalized website if there are no available translators or verifiers for the requested translations.
Also, the administrator may reject a request if the tool to produce the required rendering is not available (for
example, a request to create an RTF format). However, the creator may suggest to the administrator the availability
of such a tool that the administrator can add to the IFW server.

Figure 3. Workflow for creating an internationalized website

 Various administrative tasks may be automated, such as assigning submissions to translators. The translated
text is permanently stored in the IFW server with no repetitions, allowing for reuse as needed. The owner is able to
modify data and resubmit them for translation.

3.3 Final Product and Maintenance of CV Data

 In the previous sections, we described the process of creating an internationalized website. This section
provides a more detailed description of what the final product – an internationalized website – looks like, and what
the specific requirements are on the system serving this website (besides the standard requirement of a web server).
 The final product is a website, containing one default webpage (displayed using a primary language), which
can be used to:
• choose a secondary language to display CV data
• choose which data will be displayed
• choose a format for display.

The final product may appear in one of two available kinds:
• (i1) transient. All translations are stored in the database, and webpages accessible from the default page are

dynamic. The website has to provide the same functionality as the IFW server; see Section 3.4.3.
• (i2) persistent. All webpages are static, generated by retrieving data from the database, and applying all

transformations.

 From the perspective of the client, who is accessing the website, there is no difference in what kind of final
product is used. However, choosing a specific kind influences requirements on the server side, and efficiency of the
website.
 The generation process is performed by the IFW administrator. This process is time consuming and therefore
should be performed only if the CV data are not to be frequently changed. On the other hand, a persistent product,

Copied from: AACE Proceedings of EDMEDIA 2004. Edited by L. Cantoni & C. McLoughlin June 2126, 2004; Lugano, Switzerland 

 2046

consisting entirely of static webpages, reduces the overhead caused by creating dynamic webpages, and does not
impose any additional requirements on the website server. Therefore, the persistent product can be copied from the
IFW server to any site with the standard web server. A transient product requires a website with the server that can
handle servlets, access a database, etc. (see Section 3.4.3).
 Maintenance of CV data, such as adding a new publication, requires a submission of the request to the
administrator. Once translations of new data are preformed and verified, the transient product is available. However,
if semi-persistent or persistent requested, then the administrator will generate this product.

3.4 Implementation

 IFW is implemented with the help of several recently developed software tools using Java and XML;
specifically, JAXB, databases (either native XML or relational that support XML), and versioning of XML
documents. This section briefly describes the implementation; for a more details, see Müldner, T., Wong, F., and
Benoit, D. (2003). Internally, all data are stored in XML. Specifically, we use the XML File Interchange Format
(XLIFF); see XLIFF (2003). The advantage of the latter technique is that it is database-independent and there are
various translations tools available that use XLIFF. Note that it is easy to convert XML to XLIFF using XSLT
stylesheets; see Savourel (2001). The XLIFF format looks roughly like this:

<trans-unit>
 <target> … </target>
 <target> … </target>
</trans-unit>

 The creator enters data by working as a IFW client (see below), and these data are stored in the database on
the IFW server. To implement the programs used by all kinds of users, such as creators or translators, we use JAXB,
see Ort & Mehta (2003), which is a Java technology that makes it easy to read, modify and write back XML data.
JAXB hides from the internal XLIFF representation of data and shows appropriate GUIs to create data, translate
them, etc. The text extracted from the database is handed over to one or more translators, who will be provided with
the text, which is extracted from the translation fields (values of the target elements in the above example).

3.4.1 Database

 IFW can use any database, which can create XML files. The current implementation uses the DB2 from IBM.
IFW will access the database to perform several of its basic tasks, such as:
• building a localized CV for a specific language
• maintenance of the database, such as adding new faculty members, removing and updating data for existing

faculty members
• performing translations and verification tasks.

3.4.2 XML Extender for DB2

 The DB2 XML Extender provides much of the functionality needed to deal with XML documents. Included as
a part of the XML extender are functions designed to work with XML documents, allowing for the retrieval of
individual elements or entire XML documents. DB2 allows the XML documents to either be stored as external files
or as character data within the database. XML documents can be translated into relational data and back, allowing
relational queries to be posed against XML documents as well as allowing traditional relational data to be
transformed into XML documents. In conclusion, DB2 provides all of the functionality of a relational DBMS while
including sufficient XML functionality to manage XML data.

3.4.3 IFW Client and Server

An IFW client can use any web browser. The IFW server requires the following functionality: handling servlets,
access to a database, JDK 1.4, and Java Web Services Development Pack, WSDP.
4. Conclusions and Future Work

Copied from: AACE Proceedings of EDMEDIA 2004. Edited by L. Cantoni & C. McLoughlin June 2126, 2004; Lugano, Switzerland 

 2047

 This paper described the design and implementation of an IFW system that can create internationalized
websites. This website can be used to display CV data in one or more languages and formats. Since the current state
of automated translation systems requires human intervention, this version of IFW uses no automated translation.
However, its design, in particular the use of XLIFF, makes it possible to include future versions of automated
translation systems with no major changes of the IFW architecture.
 Future work includes internationalizing the IFW system. Once the initial system is created in a single interface
language, the system will be used on itself in order to generate new versions of the interface. IFW interface pages
will always be kept up-to-date with any translators that may be available to the system. As new translators are added
and new languages are added, the interface will be translated to represent the new languages available for
translation. In addition, our future work involves experimenting with other relational databases, such as Microsoft
SQL Server (2000) that uses a schema language XML Reduced (XDR). Also, we are planning on comparing
relational databases and pure XML databases, such as Xindice, see Xindice (2003). We will experiment with XML
versioning systems, see delta XML (2003) to compare new translations and accepted translations to retrieve parts
that have to be corrected. Finally, we will extend the functionality of IFW, to support webpages displayed with more
than one language.

References
Deitsch, A., & Czarnecki, D. (2001). Java Internationalization. O’Reilly.
Déjà Vu (2003). http://www.atril.com/
Delta XML (2003). http://www.deltaxml.com/
Dennett, G., (1995). Translation Memory: Concept, products, impact and prospects. South Bank University http://www.star-

uk.co.uk/About_us/People/Gerald_Dennett/msc.pdf
EXCEL Translations (2003). http://www.xltrans.com/ser_tra.html
Fitzgerald, M. (2003). Learning XSLT. O’Reilly.
Google (2003). http://www.google.com
Hall, M. (2001). Core Servlets and Java Server Pages. Sun Microsystems Press/Prentice Hall PTR.
HRE (2003). Hotel Reservation Service, http://www.hrs.de/
Itagaki, M. (2000). Use XML as a Java Localization Solution.

http://www.fawcette.com/Archives/premier/mgznarch/xml/2000/05win00/mi0005/mi0005.asp
IBM (2004). DB2 XML Extender Webpage, http://www-3.ibm.com/software/data/db2/extenders/xmlext/
Java (2002). http://java.sun.com/j2se/1.3/docs/guide/intl/index.html
LISA (2003). The Localization Industry Standards Association. http://www.lisa.org/tmx/
Mozilla project (1998). http://www.mozilla.org/docs/refList/i18n/
Müldner, T., Wong, F. and Benoit, D. (2003). Internationalization of Websites. Technical Report 2003-04, Acadia University,

2003
NetBeans (2003). http://www.netbeans.org/
OmniFormat (2003). http://www.omniformat.com/
Ort, E. & Mehta, B. (2003). Java Architecture for XML Binding (JAXB)

http://developer.java.sun.com/developer/technicalArticles/WebServices/jaxb/
Raetzmann, M. & de Young, C. (2003). Galileo Computing Software Testing and Internationalization. TeriR@lemoine-

international.com
Rajgopalan, S. (2003). Software Internationalization: A Holistic View. Advisor. http://portalsadvisor.com/doc/12841
RWS (2003). http://www.translate.com/locales/en-US/companyinfo.html
Savourel, Y. (2001). XML Internationalization and Localization. SAMS.
Seshadri, G. (2000). Internationalize JSP-based Websites. Java World, http://www.javaworld.com/javaworld/jw-03-2000/jw-03-

ssj-jsp.html
SUN (2002). Internationalization. http://java.sun.com/j2se/1.3/docs/guide/intl/index.html
Trados (2003). http://www.trados.com/
Transit (2003). http://www.star-ag.ch/eng/software/sprachtech/transit.html
Unicode (2003). http://www.unicode.org/
Webmail (2003). http://www.webmail.co.za
WordLingo (2003). http://www.wordlingo.com/
Xindice (2003). http://xml.apache.org/xindice/
XLIFF (2003). XLIFF 1 Specification. http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
XML (2003). http://www.wordlingo.com/
XML FAQ (2003). XML Internationalization and Localization FAQ. http://www.opentag.com/xmli18nfaq.htm
XPath (2003). http://www.w3.org/TR/xpath

