
Accepted for: The 8th IASTED International Conference on Software Engineering and Aapplications, SEA 2004, Nov. 9-11, 2004, MIT, Cambridge, USA

 1

Generic Approach to Internationalization of Websites

Tomasz Müldner, Darcy Benoit and Fei Wang
Jodrey School of Computer Science, Acadia University, Wolfville, NS, Canada B4P 2R6

Email: {tomasz.muldner, darcy.benoit, 056330w}@acadiau.ca

Abstract
There is a growing interest in international collaboration,
and therefore a need for internationalized software that
can be localized to various languages. Traditionally,
systems to develop internationalized software use a
specific database to store translations, and either manual
or automatic translations of data. This paper describes
GIW, a generic system that can be used to create
internationalized websites. GIW is able to use any kind of
database management system and is also able to handle
both manual and automatic translations. These changes
can be made without any modification to the architecture
of the GIW system.

Keywords:
internationalization, globalization, database, XML.

1. Introduction

Growing globalization results in software systems
developed in one country and shipped to several other
countries. To avoid multiple versions of the same
software, software developers had to develop a more
general approach, in which the system can be
internationalized, that is adapted to various languages
without making any significant changes to the
architecture. Localization of the internationalized system
refers to the adaptation of this system to a specific locale,
which describes the language. Due to the length of the
terms internationalization and localization, the short,
mnemonic terms of I18N and L10N are used respectively.

For many reasons, software internationalization
and localization are difficult. The most obvious reasons
are the many facets of natural languages, such as
alphabets and scripts, spacing rules, text direction, date
and currency formats, sort orders, etc. Other essential
obstacles in building systems to create internationalized
software include the choice of persistent storage for
storing and reusing translations and the decision as to
whether translations should be automatic or manual.
Automatic translations are translations performed that by
specialized software while manual translations are
performed by human beings. Many companies, such as
EXCEL Translations [8] specialize in internationalizing
existing applications.

The goal of our research is to use a generic
approach which tackles the above mentioned obstacles.
As a result, we have developed the Generic

Internationalization of Websites (GIW) system. Our
system can use any type of database for persistent storage
and is also able to handle both manual and automatic
translation. All of this can be done without modifying the
architecture of the GIW system.
 The design of GIW is based on our previous
work on internationalization. In [20] and [21], we
described the Internationalized Faculty Website (IFW)
system which can be used to create an internationalized
website showing the Curriculum Vitae (CV) for a faculty
member. IFW was limited to a single format of a CV and
used DB2, an XML-enabled database.

This paper is organized as follows. Section 2
covers related work. For the sake of completeness, we
also briefly review our previous work. Section 3 provides
details of GIW, and Section 4 concludes the document.

2. Related Work

This section briefly describes issues related to
internationalization, the support for the
internationalization given by XML, and an introduction to
automatic translation; for more information on the
internationalization process, see [26]. We also describe
our previous research.

2.1 Internationalized Applications

More and more applications are being

internationalized. One example of this is the Hotel
Reservation System [13] where the user can choose one of
25 available languages. However, there are few
internationalized personal web pages or educational
applications, with some exceptions such as the Mozilla
[19] and Opera [24] web browsers. Both browsers have a
core binary that is able to function by loading a separate
file that contains the appropriate information for a
localized interface. They each provide language files for
over 20 different languages, allowing for an easy switch
in the interface language. Finally, Webmail [35] is a
popular email client running from any browser, whose
user can choose one of over 20 languages.

2.2 XML and Internationalization

There are many advantages of using XML [40] data for
internationalization, including support for Unicode, and
ease of converting to various formats, including HTML,

Accepted for: The 8th IASTED International Conference on Software Engineering and Aapplications, SEA 2004, Nov. 9-11, 2004, MIT, Cambridge, USA

 2

PDF, etc. For more guidelines for creating XML
documents for internationalization see [40] and [27].

 2.3 Automated Translation

At the time of writing this paper, Google [11] and other
sites provide English translation of small text fragments
or entire Web pages between several languages. A user
may choose to set the Google homepage to one of more
than 100 interface languages. Microsoft Word 2002 is
able to perform automatic translation between Chinese,
English, French, German, Italian, Japanese, Korean,
Portuguese, Russian, and Spanish. Using a free upgrade
from WordLingo [36] it is possible to translate between
many other languages. While not perfect, these
translations can help the translator to perform the required
task. Repeated translations of the same string should be
avoided in order to make the translation process more
efficient. For example, translations of common phrases
such as “Press any key to continue” should be stored for
future reuse. It is expected that as translation systems
become more accurate, we will be able to automate much
of the translation process. Computer-assisted translation
uses Translation Memory (TM) systems that typically
consist of a translator module, an editor module, and a
database of terms. TM software stores language segments
translated by translator in a database for future reuse.
Translators working on text segments can invoke fuzzy
searches for these segments and use the results retrieved
from the database. Some well known companies offering
TM systems are Déjà Vu [5], the Translator's Workbench
from Trados [32], and the STAR Transit [33]. TM
software typically uses the Translation Memory
eXchange (TMX) format, a standardized XML document
type for storing collections of segments in multiple
languages. For more information on TMX, see [17].
 Using TM software for translations has both
advantages and drawbacks. Firstly, TM software views
the source text as a collection of text units called
segments. Segments may range in size from simple text
strings to paragraphs. The technique used to break up the
text into segments is called segmentation. Segmentation
may remove the context in which the text segment
appeared, resulting in an incorrect translation. An
example in [29] shows that the English word “Help”
translates to two different French words depending on the
context in which the word appears. The common solution
to the context problem is to use a verification phase in
which the translator reads, verifies and possibly corrects
the translation. The second problem with TM systems is
that they are expensive, both in terms of the price of the
software and the need to hire specialized personal able to
use these systems. (More on automatic translation in [7]).

2.4 IFW, Internationalized Faculty Websites

The design of IFW uses separation of concerns (SOC) to
separate tasks that require different type of technical
expertise.

2.4.1 Users of IFW

There are four kinds of IFW users:
• creators (specify the XML schema and enter XML

data conforming to this schema)
• administrators (maintain accounts, XML schemas,

forward documents, etc.)
• translators (translate documents submitted by

administrators)
• verifiers (verify translations submitted by

administrators)
IFW is a distributed system, consisting of a central server
(IFW server) and users accessing the IFW server through
the Internet. Any browser can be used to access the IFW
system. Users must have accounts on the IFW server.
Administrators of the IFW server create, modify and
delete accounts for all users and maintain repositories of
available translators and verifiers. Initially, the creator
sends a request to the administrator to create an account.

2.4.2 Kinds of Languages used by IFW

There are several kinds of languages used in IFW:
• The interface language is the HCI language that

appears in IFW’s GUIs. The current version of our
system uses English as an interface language.

• The source language is the language used by the
creator to enter data

• The primary language is the default language
selected for the final product. For example, if the
primary language is Spanish, then initial access to the
website will be in Spanish. The website will also be
available in the other languages selected by the
creator when using the IFW system.

• The secondary language is any language specified by
the creator as one of the languages the final product
can be displayed in (therefore the data have to be
translated from the source language to the primary
language, and all the secondary languages).

After the creator entered her or his data, they select
various options to affect the creation of the final product.
These options include the selection of:
• the primary display language for the website
• one or more secondary languages available for

display
• data to be shown (all data, only journal publications,

etc.)
• formats in which data can be rendered (HTML, PDF,

PostScript, etc.).

Accepted for: The 8th IASTED International Conference on Software Engineering and Aapplications, SEA 2004, Nov. 9-11, 2004, MIT, Cambridge, USA

 3

2.4.3 Implementation of IFW

IFW is implemented with the help of several recently
developed software tools using Java and XML;
specifically, JAXB, relational databases that support
XML, and versioning of XML documents. This section
briefly describes the implementation; for more details, see
[20] and [21]. Internally, all IFW data are stored in XML.
The creator enters data by working as an IFW client (see
below), and these data are stored in the database on the
IDUX server. To implement the programs used by all
kinds of users, such as creators or translators, we use
JAXB [25]. JAXB is a Java technology that makes it easy
to read, modify and write back XML data. JAXB hides
the internal XML representation of data and shows
appropriate GUIs to create data, translate them, etc. The
text extracted from the database is handed over to one or
more translators, who will be provided with the text

2.4.4 Databases

The implementation of IFW uses IBM’s DB2/UDB
relational database. IFW will access the database to
perform several of its basic tasks, such as:
• building a localized CV for a specific language
• maintenance of the database, such as adding new

faculty members, removing and updating data for
existing faculty members

• performing translations and verification tasks.

2.4.5 Translation Process

In order to aid in the process of selecting translators, each
translator has a profile that lists pairs of languages; each
language pair consists of the source language (a language
to translate from) and the target language (the language to
translate to). A translator’s profile may include (English,
French) and (English, German), while another translator’s
profile may include (French, Polish) and (Polish, French).
We do not assume that the ability of translating from one
language to another is reflexive. Similarly, each verifier
has a profile listing all pairs of languages that this verifier
can verify translations from and to. Administrators use
repositories of translators and verifiers to determine the
languages to include on the list of IFW-available
languages. The verifier is able to accept a translation
(possibly with minor corrections), or reject it. Note that
all data, their translations and status (new, translated or
accepted) are permanently stored on the IFW server. The
translators and verifiers can re-use previously accepted
translations. Translators and verifiers can request
accepted translations of a standard CV e.g. from English
to Polish translations of just expertise keywords from
German to Chinese.

The translated text is permanently stored in the
IFW server with no repetitions, allowing for reuse as
needed. The creator is able to modify data and resubmit
them for translation.

2.4.6 Final Product and Maintenance of CV Data

In the previous sections, we described the process of
creating an internationalized website. This section
provides a more detailed description of what the final
product – an internationalized website – looks like, and
what the specific requirements are on the system serving
this website (besides the standard requirement of a web
server).
The final product is a website, containing one default
webpage (displayed using a primary language), which can
be used to:
• choose a secondary language to display CV data
• choose which data will be displayed
• choose a format for display.

The final product may appear in one of two available
kinds:
• transient. All translations are stored in the database,

and webpages accessible from the default page are
dynamic. The website has to provide the same
functionality as the IFW server.

• persistent. All webpages are static, generated by
retrieving data from the database, and applying all
transformations.

From the perspective of the client, who is accessing the
website, there is no difference in what kind of final
product is used. However, choosing a specific kind
influences requirements on the server side, and efficiency
of the website.

The generation process is performed by the IFW
administrator. This process is time consuming and
therefore should be performed only if the CV data are not
to be frequently changed. On the other hand, a persistent
product, consisting entirely of static webpages, reduces
the overhead caused by creating dynamic webpages, and
does not impose any additional requirements on the
website server. Therefore, the persistent product can be
copied from the IFW server to any site with the standard
web server. A transient product requires a website with
the server that can handle servlets, access a database.

Maintenance of CV data, such as adding a new
publication, requires a submission of the request to the
administrator. Once translations of new data are
preformed and verified, the transient product is available.
However, if semi-persistent or persistent requested, then
the administrator will generate this product.

2.5 Internationalization of Data Using Multiple XML
Schemas

The next step in our previous research was a
design and implementation of IDUX; a system for
Internationalization of Data Using XML. IDUX
generalized IFW by allowing clients to use multiple XML
schemas. (The paper describing IDUX has been submitted
to the IADIS WWW/Internet’04.)

3. Generic Internationalization of Websites

Accepted for: The 8th IASTED International Conference on Software Engineering and Aapplications, SEA 2004, Nov. 9-11, 2004, MIT, Cambridge, USA

 4

GIW generalizes our previous systems by allowing any
kind of databases used for persistent storage, and
switching between manual and automatic translations.

3.1 Manual and Automatic Translations

GIW uses the XML File Interchange Format (XLIFF)
[38]. The advantage of the latter technique is that it is
database-independent and there are various translations
tools available that use XLIFF. Note that it is easy to
convert XML to XLIFF using XSLT stylesheets [29]. The
XLIFF format looks roughly like this:

<trans-unit>
 <target> … </target>
 <target> … </target>
</trans-unit>

Since the current state of automated translation systems
requires human intervention, this version of IDUX uses
no automated translation. However, its design, in
particular the use of XLIFF, makes it possible to include
future versions of automated translation systems with no
major changes of the IDUX architecture.

Various administrative tasks may be automated,
such as assigning submissions to translators. We are
currently working on the implementation of algorithm,
which automates the process of assigning translators and
verifiers.

3.2 Persistent Storage

Recall that a database is XML-enabled if it allows the user
to store and retrieve XML. XML-enabled relational
databases are not specifically designed to store XML data
and thus require some form of middleware to map the
XML data to the relational tables. This is done by
mapping the XML document schema (DTD, XML
Schemas, RELAX NG, etc.) to the database schema. The
data transfer software is then built on top of this mapping,
(for details of this approach, see [2]). Mainstream
database management systems (DBMSs) already support
some type of mapping between XML and relational data.
These methods usually involve creating a mapping
between the XML schema and the relational schema.
Tools are provided by the DBMS vendors to ease this
particular task. Once the mapping has been determined, it
is possible to insert, retrieve and update the XML data in
the relational database. In keeping with their experiences,
the mainstream DBMS vendors have requested that XML
support be added to the next version of SQL. SQL/XML
(or SQLX, as some refer to it) allows users to form SQL
queries that create XML structures and to specify how
relational data is to be converted to and from XML [3].

All translations used by GIW are permanently
stored and can be reused in future translation tasks. To
make GIW design database-independent, we have
designed a common interface (see Appendix) that will be

used by the implementation of GIW to talk to any
database. With this design, we are able to plug-in
different databases, including pure relational databases,
XML-enabled databases (such as Microsoft SQL Server
[18] that uses a schema language XML Reduced (XDR)),
and native XML databases (such as Xindice [37]). Our
current implementations use DB2 and Xindice.

3.3 Using GIW

This section provides several screenshots showing the use
of GIW. Figure 1 shows the interface used by the creator
to enter CV data. In this example, English is used as both
the interface and the source language.

Figure 1. The GUI used to enter CV data

Figure 2 shows the interface used by the creator to select
the source language, the primary language and one or
more secondary languages (see Section 2.4.2). In this
example, the creator selected Chinese as the primary
language, and English and Polish as two secondary
languages. The reason that the interface allows to select
the source language is that the creator who knows several
languages may wish to enter data in more than one
language, and the respective translations will not be
required. In our example, GIW will have to provide
translations from English to Chinese and Polish.

Figure 2. The GUI used to select languages

Accepted for: The 8th IASTED International Conference on Software Engineering and Aapplications, SEA 2004, Nov. 9-11, 2004, MIT, Cambridge, USA

 5

Figure 3 shows the interface used by the creator to
determine the current state of translations.

Figure 3. The GUI showing the state of translations

The translation from English to Chinese has been
completed, while the translation from English to Polish
has not been performed. Note that the above figure also
shows the type of rendering chosen by the creator; in this
example it is HTML. (Recall that other types of rendering
can be made available, such as PDF). Clicking the top
“GO” button would show another window, with the
Chinese version, in the HTML format.

4. Conclusions and Future Work

This paper described the design and implementation of a
GIW system that can create internationalized websites.
Currently, we are creating internationalized websites of
various faculty members, which will include localizations
to a number of languages, such as French, German,
Japanese, Chinese, Polish, Spanish, Hungarian and
Arabic.

Future work includes internationalizing the GIW
system. Once the initial system is created in a single
interface language, the system will be used on itself in
order to generate new versions of the interface. GIW data
will always be kept up-to-date with any translators that
may be available to the system. As new translators are
added and new languages are added, the interface will be
translated to represent the new languages available for
translation.

We will also experiment with XML versioning
systems [6] to compare new translations and accepted
translations to retrieve parts that have to be corrected.
Finally, we are currently working on implementation of
algorithms that automatically select translators and
verifiers, releasing administrators from the task of
assigning these duties.

References

[1] Aho, A. V., Hopcroft, J.E., and Ullman, J. D., Data
Structures and Algorithms. Addison-Wesley, Mass, 1983.
[2] Bourret, R. (2003) XML and Databases,
http://www.rpbourret.com/xml/XMLAndDatabases.htm
[3] DataDirect Technologies (2003). SQL/XML in JDBC
Applications, http://www.datadirect-
technologies.com/products/connectsqlxml/docs/sqlxml_whitep.p
df
[4] Deitsch, A., & Czarnecki, D. (2001). Java
Internationalization. O’Reilly
[5] Déjà Vu (2003) http://www.atril.com/
[6] Delta XML (2003) http://www.deltaxml.com/
[7] Dennett, G., (1995). Translation Memory: Concept,
products, impact and prospects. South Bank University
http://www.star-
uk.co.uk/About_us/People/Gerald_Dennett/msc.pdf
[8] EXCEL Translations (2003)
http://www.xltrans.com/ser_tra.html
[9] Fitzgerald, M. (2003) Learning XSLT. O’Reilly
[10] Globalizing your e-business. (2004) http://www-
306.ibm.com/software/globalization/topics/webservices/translati
on.jsp
[11] Google (2003) http://www.google.com
[12] Hall, M. (2001) Core Servlets and Java Server Pages. Sun
Microsystems Press/Prentice Hall PTR.
[13] HRS (2003) http://www.hrs.de/
[14] Itagaki, M. (2000) Use XML as a Java Localization
Solution.
http://www.fawcette.com/Archives/premier/mgznarch/xml/2000
/05win00/mi0005/mi0005.asp
[15] IBM, DB2 XML Extender webpage http://www-
3.ibm.com/software/data/db2/extenders/xmlext/
[16] Java (2002)
http://java.sun.com/j2se/1.3/docs/guide/intl/index.html
[17] LISA (2003). The Localization Industry Standards
Association. http://www.lisa.org/tmx/
[18] Microsoft SQL Server (2003), http://www.microsoft.com/
[19] Mozilla project (1998)
http://www.mozilla.org/docs/refList/i18n/
[20] Müldner, T., Wong, F. and Benoit, D. (2004). My webpage
can speak many languages. Accepted for: EDMEDIA'04;
Lugano, Switzerland
[21] Müldner, T., Wong, F. and Benoit, D. (2003).
Internationalization of Websites. Technical Report 2003-04,
Acadia University, 2003
[22] NetBeans (2003). http://www.netbeans.org/
[23] OmniFormat (2003) http://www.omniformat.com/
[24] Opera Browser
http://www.opera.com/download/languagefiles/ , 2004.
[25] Ort, E. & Mehta, B. (2003) Java Architecture for XML
Binding (JAXB)
http://developer.java.sun.com/developer/technicalArticles/WebS
ervices/jaxb/
[26] Raetzmann, M. & de Young, C. (2003) Galileo Computing
Software Testing and Internationalization. TeriR@lemoine-
international.com
[27] Rajgopalan, S. (2003) Software Internationalization: A
Holistic View. Advisor. http://portalsadvisor.com/doc/12841
[28] RWS (2003) http://www.translate.com/locales/en-
US/companyinfo.html
[29] Savourel, Y. (2001). XML Internationalization and
Localization. SAMS.

Accepted for: The 8th IASTED International Conference on Software Engineering and Aapplications, SEA 2004, Nov. 9-11, 2004, MIT, Cambridge, USA

 6

[30] Seshadri, G. (2000) Internationalize JSP-based Websites.
Java World, http://www.javaworld.com/javaworld/jw-03-
2000/jw-03-ssj-jsp.html
[31] SUN (2002). Internationalization.
http://java.sun.com/j2se/1.3/docs/guide/intl/index.html
[32] Trados (2003) http://www.trados.com/
[33] Transit (2003) http://www.star-
ag.ch/eng/software/sprachtech/transit.html
[34] Unicode (2003) http://www.unicode.org/
[35] Webmail (2003) http://www.webmail.co.za
[36] WordLingo (2003) http://www.wordlingo.com/
[37] Xindice (2003) http://xml.apache.org/xindice/
[38] XLIFF (2003). XLIFF 1 Specification. http://www.oasis-
open.org/committees/xliff/documents/xliff-specification.htm
[39] XML (2003) http://www.wordlingo.com/
[40] XML FAQ (2003) XML Internationalization and
Localization FAQ. http://www.opentag.com/xmli18nfaq.htm
[41] XPath (2003) http://www.w3.org/TR/xpath
[42] Zydron, A. (2004) Translating XML Documents with
xml:tm.
http://www.xml.com/pub/a/2004/01/07/xmltm.html?page=1

Appendix: Common Interface

package ca.acadiau.cs.datasource;
import java.util.Vector;
/**
 Interface for the data source layer.
 Provides the minimal required
 functionality to connect to any
 abstracted data source -- file system,
 relational database, XML database, etc.
*/
public interface DataSourceInf {
 /** Delimiter to break up tokens
 contained in Strings
 */
 public final static String DELIMITER =
 ":#:";

 /** Ask the datasource for some
 information. Queries to the datasource
 can be made against one entity only.
 The data requested for return is
 specified in returnedElements which
 are the names of the individual types
 (columns, nodes) seperated by
 the delimiter. Any conditions are also
 specified, seperated by the
 delimiter, in a key=value format.
 */

 public Vector query(String entity,
 String returnedElements,
 String condition);

 /** Removes anything matching the
 condition from the entity in the
 datasource. The entity is a single
 token string indicating the table,
 tree, file to delete from. The
 condition is DELIMITER seperated
 key=value. String which determines
 which entries to remove from the
 datasource. Method returns true if

 something is deleted, based on the
 condition; and, returns false
 otherwise.
 */

 public boolean delete(String entity,
 String condition);

 /** Updates all elements in a given
 entity based on a condition.
 The element is a single key=value
 string of what will be updated
 based on the condition. The condition
 is a String seperated by DELIMITER of
 key=value pairs that specify the
 conditions that an update will occur on.
 */

 public boolean update(String entity,
 String element, String condition);

 /** Inserts data into the data source.
 Adds data to the specified entity. The
 elements to be added are specified in
 elements. The elements parameter is a
 String of key=value pairs seperated by
 DELIMITER.
 */
 public boolean insert(String entity,
 String elements);

}

Darcy Benoit � 1/3/04 5:03 PM
Comment: Is this reference for 2004?

