
Citation: Lastname, F.; Lastname, F.;

Lastname, F. Title. Journal Not Specified

2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2024 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Estimating Apple Yield Using Video Images And Deep Learning
Niroj Shrestha 1,‡, Daniel L. Silver 1,†,‡* and Brett Connell2

1 Acadia University; nirojshrestha019@gmail.com, danny.silver@acadiau.ca
2 Pomona Farms; brettconnell4@gmail.com
* Correspondence: danny.silver@acadiau.ca; Tel.:+1-902-585-1413
† Current address: Jodrey School of Computer Science, Acadia University, Wolfvile, NS Canada B4P2R2.
‡ These authors contributed equally to this work.

Abstract: We use low-cost video capture, computational vision techniques, and deep learning 1

methodologies to estimate apple yield while the apples are still on the tree. Video of a variety bi- 2

coloured apples is captured from both sides of an orchard row using a smartphone. A convolutional 3

neural network (CNN) based on the YOLOv3 architecture is trained to detect apples in the sequence 4

of video images. The tracking of each detected apple is done using a Kalman filter. The Hungarian 5

algorithm, inclusive of motion and appearance information, is used to solve the association problem 6

between the previously tracked and the newly detected apples. The count is derived using this 7

tracking information. The system generates a diagnostic video that shows the distinction between 8

the apples that are being tracked and those that are counted by a change in the color of the bounding 9

box surrounding the apple. The experiments show that the proposed framework performs best with 10

transfer learning and data augmentation techniques. The final predictive model for apple detection 11

has an AP (average precision) score of 90.72, the tracking model has an MT (mostly tracked) score of 12

36.09, and the system counts apples with an F1-score of 94.97%. 13

Keywords: estimating apple yield; convolutional neural networks; YOLOv3; transfer learning; data 14

augmentation; object detection; object tracking. 15

1. Introduction 16

As a high-value crop, apples are intensively managed with much of this management 17

being associated with yield estimates. Accurate prediction of apple yield is relevant for 18

agricultural and market planning by growers, wholesalers, supermarkets, and exporters 19

in terms of labor, packing, storage, and transportation. To date, yield estimation is mainly 20

based on the historic performance of an orchard in the previous years combined with 21

periodic estimates from sample trees in the current year. This results in estimates of varied 22

quality from farm to farm and between apple varieties. 23

Advancements in technology have made high-resolution monocular cameras readily 24

available in most of today’s smartphones. So, it would be more practical and cost-effective 25

to build a computer vision system capable of estimating yield in the field using commodity 26

hardware such as that found in smartphones. These factors motivated the investigation of 27

a high-performance, cost-effective and practical apple yield estimation system that uses 28

a monocular camera on a smartphone. The research was commissioned and funded by 29

Scotian Gold Cooperative Limited, of Kentville, Nova Scotia, as well as by the National 30

Research Council of Canada Industrial Research Assistance Program (NRC IRAP) and the 31

Mitacs Accelerate program. 32

The objective of this research is to develop a low-cost but effective computer vision 33

method to predict the apple yield of an orchard up to 4 weeks prior to harvest. To achieve 34

this objective our approach will be as follows: (1) Capture video of apple trees in the 35

orchard environment using a smartphone up to one month in advance of harvest; (2) Use 36

computational vision and deep learning techniques to detect apples in the video; (3) Track 37
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detected apples across a sequence of images (video frames) avoiding the double counting 38

of apples; (4) Estimate the overall apple yield based on the count of apples. 39

The detection of apples from a sequence of images is a challenging task for several 40

reasons, including appearance variability due to illumination and occlusion due to foliage 41

and fruits. So, the success criterion for the detection problem is set to a minimum average 42

precision (AP) of 90 based on prior work [1]. Further, tracking each detected individual 43

apple in a continuous sequence of images to prevent double counting is another challenge. 44

The success criterion for the counting problem is set at a modest F1-score of at least 90%. 45

2. Prior Methods of Fruit Yield Estimation 46

Older hand-crafted computer vision methods usually have difficulty generalizing to 47

variations in illumination and object occlusion levels. Consequently, data-driven methods 48

have become the state of the art, primarily as a result of advances in deep learning methods. 49

Chen, Steven W., et al. used a blob detector based on a Fully Convolutional Network (FCN) 50

to extract candidate fruit regions from stand-alone high-quality images [1]. A counting 51

algorithm based on a second convolutional network estimates the number of fruit in each 52

region. Finally, a linear regression model maps the fruit count estimate to a final fruit count. 53

The mean absolute percentage error (MAPE) was 13.8% on an orange orchard dataset and 54

10.5% on an apple orchard dataset. 55

Various data collection methods have been used for capturing video images of fruit on 56

the trees in an orchard. Liu, Xu, et al. used a monocular camera system and a sensor-suite- 57

based system for data collection in a mango orchard [2]. These systems were mounted 58

on an unmanned ground vehicle (UGV) which consisted of a 3D LIDAR, GPS (global 59

positioning system) inertial navigation system capable of real-time-kinematic correction, 60

and a Prosilica GT3300C camera with a Kowa LM8CX lens that captured RGB images of 61

size 3296 x 2672 pixels (8.14 megapixels) at 5 Hz. 62

Liu, Xu, et al. also used two other approaches to collect data in an orchard environment 63

[3]. Images from an orange orchard, each of size 1280 x 960, were captured using a Bluefox 64

USB 2 camera at 10 Hz mounted on SteadiCam gimbal carried by a human operator 65

travelling at walking speed during daylight hours. Similarly, images of apples on the tree, 66

each of size 1920 x 1200, were captured using a PointGrey USB 3 camera at 6 Hz mounted 67

on a utility vehicle with an external flash at night driving down the row at around 1 m/s. 68

Liu, Xu, et al. presented a fruit counting pipeline approach that combined deep 69

segmentation, frame to frame tracking, and 3D localization to accurately count visible 70

fruits across a sequence of images [3]. First, a Fully Convolutional Network was trained 71

to segment video frame images into fruit and non-fruit pixels. Fruits across frames were 72

tracked using the Hungarian algorithm where the objective cost was determined by a 73

Kalman filter. In order to correct the estimated count from the tracking process, the 74

Structure from Motion (SfM) algorithm was used to calculate relative 3D locations for 75

rejecting the outliers and double-counted fruit tracks. Here, a mean error of 0.2% on the 76

fruit count was calculated for the orange dataset and likewise, a mean error of 3.3% for the 77

apple dataset. 78

Automatic robotic fruit counting systems using LidAR have been developed [4] [5]. 79

These systems have demonstrated success in counting a variety of fruits including apples, 80

mangoes, and oranges; however they are currently quite costly. For example, a sensor 81

suite equipped with cameras, LiDAR, and a computer can cost more than $10,000. The 82

infrastructure, technical knowledge, and high cost constraints make it impractical to use 83

such a complex sensor suite in many agricultural environments. 84

3. Theory and Approach 85

This section provides the theory and approach of our research. Specifically, it describes 86

the data collection process, image pre-processing techniques, the network architectures for 87

apple detection, tracking and counting, and the evaluation methods used. 88
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3.1. Data Collection 89

A Samsung Galaxy S3 smartphone was used as the primary camera for data collection. 90

Video was captured from the first week of August until the second week of September 2020. 91

Data was collected from a row of bi-coloured (red and yellow) apples at Pomona Farms, 92

in Canard, Nova Scotia. The row consisted of 179 trees in total. Several image capturing 93

approaches were considered: (1) Camera with tripod, (2) Camera mounted on vehicle, (3) 94

Camera with stabilizer, (4) Person holding the camera on the back of ATV, (5) Camera with 95

artificial light, and (6) Intel RealSense depth camera D435. The method that worked best 96

for this research was to have a person hold the camera on the back of an ATV as shown 97

in Figure 1. The video frames were clear and sharp despite having some minor stability 98

problems. Videos were taken of all 179 trees of a specific row from both sides. Data was 99

collected once per week from the first week of August until harvest day (10 September 100

2020) using this method. 101

Two sources of ground truth were used for the apple count: (1) Video ground truth: the 102

count of apples as seen by the research team on each tree in the videos. (2) Orchard ground 103

truth: the actual apple count on each tree as seen by human eyes. Three teams consisting of 104

two people each manually counted the fruit from 179 trees in a row of the apple variety 105

videoed. The average count over the three teams was taken as ground truth coincidental 106

with the video captured the same day. 107

Figure 1. Primary data collection method - person holding camera on back of ATV.

3.2. Data Preparation for Apple Detection 108

This section describes the preprocessing of the smartphone video data into a sequence 109

of images for training and testing the apple detection model. 110

Conversion of video into image frames - The captured videos of the orchard row are 111

about 6 minutes and 30 seconds long and shot at 30 frames per second (fps). Since 30 112

frames per second contain images with redundant information, a Python script was written 113

to select 2 frames per second from the video. For our experiment, we selected a video that 114

was captured on the 9th of September, just prior to harvest the next day which consist of 115

mostly red apples. Figure 2 shows examples of image frames that were extracted from the 116

video. These converted images were then annotated and used for training and testing the 117

initial apple detection model. 118

Image annotation - Our research uses a supervised machine-learning technique for 119

apple detection. This requires that the train and test data be labeled with the correct 120

locations of apples. So, an open-source Python-based image annotation tool called LabelImg 121

[6] is used to annotate the apples in the sequence of images. The annotated files are saved in 122

Pascal Visual Object Classes (VOC) format. About 250 images were annotated. Verification 123
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Figure 2. Sample image frames from smartphone video.

of the annotations is done to make sure that the apples are correctly labeled. Figure 3 shows 124

the screenshot of the LabelImg tool that is used to annotate the apples in the images. 125

Figure 3. LabelImg tool used to annotate the image.

Image normalization and scaling - Preprocessing of each image is done to decrease the 126

model training time and increase the model accuracy. Image normalization is done to 127

ensure a uniform homogeneous distribution of the data. Each pixel value is subtracted 128

by the mean pixel value of the image and then is divided by the standard deviation. As 129

most of the images produced by modern cameras are high resolution, image scaling is 130

used for reducing the input size to save computational time and space. We tried various 131

image scales (320 x 320, 416 x 416, 736 x 736) and found that 416 x 416 pixels provide good 132

accuracy with reasonable neural network training times. 133

3.3. Data Preparation for Appearance Feature Extractor 134

Images were prepared for training the appearance feature extractor, which was critical 135

for tracking each apple from frame to frame. The source of data were the images prepared 136

and annotated for object detection. A Python script was written to crop each bounding box 137

of apples into a separate image file. The training set for the appearance feature extractor 138

consisted of 2,972 images that are resized to 128 × 256. Figure 4 shows several cropped 139

individual apples from the annotated sequence of images. An image scaling technique, 140

similar to that described in Section 3.2, is applied to these images. The only difference is 141

that the images are resized to 128 x 256 pixels before feeding them into the neural network. 142

Since the cropped images tend to be of different sizes, we do not preserve the aspect ratio 143

while resizing. 144

3.4. Object Detection Model: 145

The single-stage detector YOLOv3 [7] architecture is adopted for training the apple 146

detection model. The whole architecture can be divided into two major components as 147

shown in Figure 5: a feature extractor and a detector. A new image goes through the feature 148

extractor first so that feature embeddings are obtained at three different scales. Then, these 149
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Figure 4. Cropped individual apple images.

features are fed into three (or more) branches of the detector to get bounding boxes and 150

class information. 151

Figure 5. Components breakdown of YOLOv3 model.

Feature Extractor: The feature extractor that YOLOv3 uses is called Darknet-53. The 152

Darknet version from YOLOv1 [8] had only 19 layers. ResNet [9] provided the idea of 153

skip connections to help neuron activations propagate through deeper layers without the 154

gradient diminishing. Darknet-53 borrows this idea and successfully extends the network 155

from 19 to 53 layers, as shown in Figure 6. 156

Figure 6. YOLOv3 multi-scale feature extractor.

Multi-scale Detector: Once we have three scaled feature vectors, we feed them into the 157

detector as shown in Figure 7. Multiple 1 x 1 and 3 x 3 convolutional layers are used before 158
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a final 1 x 1 convolutional layer to form the final output. The 1 x 1 filters [10] downsample 159

the depth or number of feature maps. For medium and small-scale features, the filters also 160

concatenate the features from the previous scale. By doing so, small-scale detection can 161

also benefit from the result of large-scale detection. 162

Figure 7. YOLOv3 multi-scale detector.

Anchor Box: The anchor box can have different pre-defined aspect ratios. These aspect 163

ratios are determined before training by running k-means on the entire dataset. In this 164

research we use the anchor boxes that were determined by k-means clustering on the COCO 165

dataset as mentioned in the original YOLOv3 paper [7] and they are (10 x 13), (16 x 30), (33 166

x 23), (30 x 61), (62 x 45), (59 x 119), (116 x 90), (156 x 198), and (373 x 326). The convolution 167

outputs a square matrix of feature values (like 13 x 13, 26 x 26, and 52 x 52 in YOLO). We 168

define this matrix as a grid and assign anchor boxes to each cell of the grid. In other words, 169

anchor boxes anchor to the grid cells, and they share the same centroid. Once we defined 170

those anchors, we can determine how much the ground truth box overlaps with the anchor 171

box and pick the one with the best IoU (intersection over union), and couple them. Figure 8 172

shows the three different scale anchor boxes that we apply to each grid of the whole image 173

grid cells. These multi-sized anchor boxes make it possible to detect varying size apples. 174

Figure 8. YOLOv3 anchor box and grid cells.

In YOLOv3, we have three anchor boxes per grid cell, as mentioned before, as well as 175

three scales of grids. Therefore, we will have 52x52x3, 26x26x3, and 13x13x3 anchor boxes 176

for each scale. Each anchor box makes three predictions: 177

• The location offset against the anchor box: tx, ty, tw, th. This has 4 values. 178

• The objectness score to indicate if this box contains an object. This has 1 value. 179

• The class probabilities to tell us which class this box belongs to. This has num classes 180

values. 181
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Assuming the input image is (416, 416, 3), the final output of the detectors will be in 182

shape of [(52, 52, 3, (4 + 1 + num classes)), (26, 26, 3, (4 + 1 + num classes)), (13, 13, 3, (4 + 183

1 + num classes))]. The three items in the list represent detections for three scales and (4 184

+ 1 + num classes) values are the predictions for one anchor box. The real coordinates of 185

the bounding box are not tx, ty, tw, th. These are just the relative offsets compared with a 186

particular anchor box. The following formula describes how the network output (i.e., the 187

relative offsets for anchor box) is transformed to obtain bounding box predictions: 188

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwetw

bh = pheth

(1)

where (tx, ty, tw, th) are outputs of the network, (bx, by, bw, bh) are the predicted bounding 189

box, (cx, cy) are the top-left coordinates of the anchor, and (pw, ph) are width and height of 190

the anchor. 191

3.5. Object Tracking Model 192

The multiple objects tracking DeepSORT [11] architecture was adopted for tracking the 193

detected apples. DeepSORT extends SORT [12] by incorporating appearance information 194

for each tracked object. The position information of all detected apples, stored in an eight- 195

dimensional matrix, is extracted and used to represent the current state of the target. The 196

matrix is given by (u, v, γ, h, x’, y’, γ’, h’) that contains the bounding box center position (u, 197

v), aspect ratio γ, height h, and their respective velocities in image coordinates which is 198

(0,0,0,0) initially. A standard Kalman filter [13] with constant velocity motion and linear 199

observation model is used where it takes the bounding coordinates (u, v, γ, h) as direct 200

observations of the object state. The state of the current target is fed into the Kalman filter, 201

and the target is predicted and updated. 202

The association problem between the predicted Kalman states and newly arrived 203

measurements is solved with the Hungarian algorithm [14], which is a combinatorial 204

optimization algorithm that solves the assignment linear-programming problem (matching 205

between previously seen apple detection and the current detection) in sequential time (i.e., 206

consecutive frames of video images). The Mahalanobis distance is used to incorporate 207

motion information by calculating the distance or discrepancy between the predicted 208

Kalman state and the newly arrived measurements of the detection [15]. 209

Mahalanobis distance only considers the distance relationship between the detection 210

target and the prediction target, which is suitable for the association when motion uncer- 211

tainty is low. The unaccounted camera motion can introduce rapid displacements in the 212

image plane, making the Mahalanobis distance an uninformed metric for tracking through 213

any occlusions of the object in an image sequence. Another metric, known as the appear- 214

ance metric, is incorporated into the assignment problem. It measures the dissimilarity in 215

appearance feature metric into the cosine distance between the jth detection and the history 216

of the ith track. For the previously calculated Mahalanobis and the appearance cosine 217

distances, a fusion is required and given by ci,j = λd(1)(i, j) + (1 − λ)(d(2)(i, j) where λ is 218

a hyperparameter used to adjust the weights of two items. We set λ to 0.1 in this research 219

work. 220

3.6. Evaluation 221

Different evaluation metrics are used to determine the performance of the various 222

models for object detection, object tracking, and object counting. 223

Object Detection: Average Precision (AP) is used as an evaluation metric for object 224

detection models because it takes into consideration both the classification loss and local- 225
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ization loss. It is calculated from the following statistics: precision, recall, and intersection 226

over union or IoU. 227

Precision measures relative predictions that are correct, and is given by P = TP
TP+FP , 228

where TP is the total number of true positives, and FP is the total number of false posi- 229

tives [16]. Recall measures the proportion of the total correctly classified and is given by 230

R = TP
TP+FN where FN is the number of false negatives [16]. 231

IoU is given by the ratio of the intersection area of the ground truth box and the
predicted box over the union area of both boxes.

IoU =
Area of intersection

Area of union
(2)

Figure 9 shows an example of intersection over union. We consider the yellow high- 232

lighted box as predicted and the blue highlighted box as a ground truth. The intersection 233

between them is denoted by the green highlighted box. The first example has no inter- 234

section between the predicted and ground truth bounding box, so the IoU is 0. Likewise, 235

the third example has IoU=1 as both the predicted and ground truth bounding boxes 236

completely overlap. 237

Figure 9. Intersection over union example [17].

An IoU threshold value is used to determine if a predicted bounding box is TP, FP, 238

or FN. Bounding boxes are considered as FP when their IoU is under a certain threshold 239

or if there are duplicated bounding boxes. They are considered FN when ground truth is 240

present in the image, and the model failed to detect the object. Only the predicted bounding 241

boxes with IoU above the threshold value are considered TP. 242

The precision P is plotted against the recall R value for each of the detected objects
to get the average precision (AP) [18]. AP is the area under the precision-recall curve
(AUC-PR) for a class. It is defined as the weighted sum of precisions at each threshold,
where the weight is the increase in recall. Mathematically, AP is given as

AUC-PR = AP =
n−1

∑
k=0

[Recalls(k)− Recalls(k + 1)] ∗ Precisions(k) (3)

where n is the number of thresholds. 243

Object Tracking: The evaluation metric used for object (apple) tracking in this research 244

is Mostly Tracked (MT). A target is mostly tracked if it is tracked for at least 80% of its life 245

span [19]. This means if a target object can be seen in 10 video frames then that object will 246

only be considered as mostly tracked when it is tracked for at least 8 frames. The higher 247

the MT value the better. 248

Object Counting: The evaluation metric for apple counting is the F1-score, which is 249

defined as the harmonic mean of Precision and Recall, F1-Score = 2∗Precision∗Recall
Precision+Recall . 250

4. Model Development Using 5-Fold Cross-validation with Transfer Learning and Data 251

Augmentation 252

Objective: Prior research has shown that transfer learning and data augmentation 253

techniques can improve deep learning model performance significantly. The objective of 254

this experiment is to train our object detection model with both transfer learning and data 255
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augmentation techniques and to evaluate its performance using a k-fold cross-validation 256

experimental design. 257

Data and Methods: For this experiment, 40 images are randomly chosen from a 258

sequence of images taken during the daytime. The image processing technique described 259

in the prior section is used to prepare the data for this experiment. 260

The YOLO architecture is adopted for training our object detection model using the 261

Tensorflow and Keras frameworks as described in Section 3.4 and shown in Figure 6. 262

Features from the last three residual blocks are extracted for multi-scale detection. Both the 263

F1 score and IoU threshold are set at 0.7 by the iterative method. The output consists of 264

bounding box coordinates, objectness score (0 or 1 to indicate if the box contains an object), 265

and confidence of the detected apples. The cost function consists of four parts: centroid 266

loss, width and height loss, confidence loss, and classification loss. The total loss is the sum 267

of all the losses where the mean square error is used to calculate the first two losses, and 268

cross-entropy loss is used for the last two losses. 269

We conducted early experiments to determine the best input image size so that we 270

can decrease model training time without compromising on performance. We chose three 271

different image sizes: 320 x 320, 416 x 416, and 736 x 736 for training respective models. We 272

found that images that are 416 x 416 would be the best choice because their models have 273

minimum computational time with a negligible decrease in AP score. 274

Transfer learning is a technique where a neural network model is trained on one task 275

and then used as the starting representation (weights value) for learning a different but 276

related task. The pre-trained model used to transfer knowledge has been trained on the 277

Microsoft Common Objects in Context (MS COCO) [20] dataset in which the apple is one of 278

80 categories for object detection. Weights from a model trained on the MS COCO dataset 279

are used to initialize our apple detection model which only outputs one class (apple) before 280

training begins and then all the weights in the network are fine-tuned using the training 281

dataset. 282

The idea of data augmentation is to increase the amount of available training data by 283

creating variants of the original images through linear transformations of the pixels. Three 284

data augmentation techniques are applied to the images used to train the apple detection 285

model: (1) Horizontal flip: the columns of pixels for each image sample are reversed. (2) 286

Random crop: a random portion of the original image is selected, and the cropped image 287

is padded to match the input size 416 x 416 before feeding it into the neural network. (3) 288

Translation: the object’s location is shifted along the x and y-axis randomly with respect to 289

the width and height of the original image [21]. Figure 10 shows examples of the different 290

data augmentation techniques used. The annotations of the augmented images are also 291

translated respectively following the change in the original image. 292

The data augmentation and transfer learning techniques described above are applied 293

during training and the model evaluation is conducted using a 5-fold cross-validation 294

approach. The model is trained for 500 epochs using the Adam optimizer with an initial 295

learning rate of 0.0001 and with early stopping to prevent overfitting. 296

(a) original image. (b) horizontal flip. (c) random crop. (d) translation.
Figure 10. Different data augmentation techniques.

Results and Discussion: The results of 5-fold cross-validation evaluation show that the 297

training of the model with both transfer learning and data augmentation has a significant 298

improvement to previous experiments with an average AP score of 95.64. There are 141 299
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true positives and 7 false-positives out of 147 total ground truth apples. This is a TP rate of 300

0.95 and a FP rate of 0.05. 301

5. Object Detection Using a Sequence of Video Images 302

Objective: In the previous experiment, the system is tested on a single image at a 303

time. The objective of this experiment is to create a system that can use this approach for a 304

sequence of images from a video. 305

Data and Methods: A larger dataset is used for this experiment. A sequence of 232 306

daylight images are selected and split into 174 train, 32 validate, and 26 test images. Both 307

transfer learning and data augmentation techniques are used for this experiment. The same 308

image processing techniques from Section 3.2, the YOLO neural network architecture, and 309

hyperparameters described in Section 3.4 are used to develop the model for this experiment. 310

The training is done for 500 epochs. 311

The top portion of Figure 11 shows the sequence of steps used to go from the input 312

video to the detection of apples in the form of bounding boxes. We added functionality 313

to accept any video as input for testing. The core idea is to convert the input video into a 314

sequence of images, apply image pre-processing techniques to each frame and then feed 315

it to our trained model for prediction. Furthermore, the predicted sequence of images is 316

stacked together to form a video. The intention behind this experiment is to detect the 317

apples in each frame of the video and pass this information to the next phase for tracking 318

each of them as they appear. The time required to process the test set is carefully recorded 319

so as to determine the throughput rate in frames per second. 320

Figure 11. Apple detection and tracking workflow.

Results and Discussion: The system, with an IoU threshold of 0.7, achieved an AP 321

score of 90.72 where 351 out of 380 video ground truth apples are detected in the test set of 322

26 video image frames. This is a TP rate of 0.92 and a FP rate of only 0.09. This experiment 323

also revealed that the system can process a video file at 9.4 frames per second (fps). In the 324

future, if the system could be optimized to 30 fps then it could be used to detect apples in 325

real time, providing feedback to the operator or control software. 326

6. Object Tracking with Appearance Feature Descriptor 327

Objective: In the previous section the apple detection model was trained to detect 328

apples with an AP score greater than 90. The apples are detected accurately but the same 329

apples appear in multiple frames of a video, therefore, it is necessary to avoid double 330

counting each apple. The objective of this experiment is to track each detected apple from 331

frame to frame so that it is counted only once. 332
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Data and Methods: The object detection model from the previous experiment is used 333

to detect apples in each frame. The DeepSORT [11] algorithm, as described in Section 3.5, 334

is implemented to solve the tracking problem. It takes in the output from the previously 335

trained object detection model (i.e., bounding box coordinates of detected apples). A 336

Kalman filter is used for tracking the detected apples from frame to frame. The Hungarian 337

algorithm, which is inclusive of the appearance features information, is used for solving 338

the association problem between the tracked and the detected apples. The appearance 339

feature extractor is trained to extract the appearance information from each detected apple 340

to enhance tracking in scenarios where there is occlusion of an apple in a frame. Figure 11 341

shows the workflow of the tracking method surrounded by a dashed square. 342

A total of 2,972 images of apples were extracted from the annotated object detection 343

training set, as described in Section 3.3, for training the feature extractor. The Adam 344

optimizer is used to train the appearance feature extractor model with an initial learning 345

rate of 0.001 and cosine distance as the cost function. The model is trained for 500 epochs 346

with a batch size of 32. Videos taken from both sides of the first 10 trees in the row are used 347

as a test set. 348

Results and Discussion: The evaluation of the DeepSORT tracking algorithm deter- 349

mined that 36.09% of the tracked apples have the same track ID for at least 80% of their life 350

span (those Mostly Tracked). Figure 12a shows the comparison of predicted results from 351

this experiment versus the video ground truth count of the apples on the first 10 trees. The 352

total count of the predicted apples is more than the actual count due to the switching of the 353

IDs assigned to the tracked apples. One of the reasons for ID switching is the occlusion 354

of apples by leaves and branches. Another reason is the appearance feature similarity 355

between different detected apples that are close to each other. Figure 12b and 12c shows 356

two consecutive output image frames from the tracking algorithm. The blue bounding box 357

shows the detected apples and has the same tracking ID in the consecutive image. This 358

tracking information is important to determine the accurate count of the apples in the video 359

as described in the following experiment. 360

(a) (b) (c)
Figure 12. (a) Comparison of predicted vs actual apple count, (b) and (c) example output frames from
tracking algorithm.

7. Counting Tracked Apples Based on Their Age in the Video 361

Objective: In the previous experiment, the count is only dependent on the track ID of 362

each detected apple and this results in predicting more apples than are actually present, 363

due to occlusions and other noise in the video frames. The objective of this experiment is to 364

determine the accurate count of the apples by considering the age of the tracked apple in 365

the video. We also develop a method to visualize the tracking of apples in the video, which 366

serves as a diagnostic tool for refining our approach to object detection and tracking. 367

Data and Methods: We define the age of the tracked object as the number of contiguous 368

frames of a video in which an object ID is tracked. Only an apple with an age above a 369

predefined threshold is considered for counting. Videos taken from both sides of the first 10 370

trees in the row are used as the test set. It takes 20 frames on average for an apple to enter 371

and exit from the defined region of interest. The age threshold to consider counting an 372
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apple is chosen as 10 frames or 50% of the average number of frames. A different bounding 373

box color is used for the tracking and counted apple. A blue bounding box is used to 374

indicate a detected apple in the video, and the color is changed to green and counted after 375

being tracked for more than 10 frames. A blue tracing path for each apple is also included 376

to provide diagnostic information. This is done by labeling the central location of each 377

tracked apple by a blue dot and these dots make the tracing path in the consecutive video 378

frames. The left side of Figure 11 shows the workflow of the counting method used. 379

Results and Discussion: This experiment shows that the proposed system achieves 380

an F1-score of 94.97% for counting apples, which falls well within our success criteria. The 381

model’s precision was 98.29 and its recall was 91.87. Figure 13a shows the comparison 382

of the sum of the predicted count from both sides (east and west) of the first ten trees 383

with the orchard ground truth for those trees. The total predicted count is 241 whereas 384

the actual orchard ground truth count is 239. Although the sum of predicted apples from 385

both sides is close to the ground truth, there are two problems that need to be addressed: 386

some apples continue to be missed due to occlusion from leaves and branches, and some 387

apples are double-counted because they are visible from both sides of the row. To solve the 388

double-counting issue, we have explored a method that is able to determine on which side 389

of a tree an apple is located. This work will be documented in a future paper where we 390

also consider counting the apples by their size (grade). 391

(a)
(b)

Figure 13. (a) Comparison of predicted sum of apples vs the actual human count in orchard and (b)
Screenshot from video output of our final model.

Figure 13b shows a screenshot of the output video produced by our system for this 392

experiment. Blue bounding boxes indicate detected apples, blue lines are the traced path 393

of the tracked apple, green bounding boxes indicate the counted apples, and the text at 394

the upper top left provides the apple count and the frame rate of the images processed by 395

our model. The results of apple detection with tracking on the video files show that our 396

model performs on average 8.6 fps which is just a little slower than apple detection. This is 397

because of the additional apple counting steps. 398

8. Conclusion 399

The accurate prediction of apple yield is relevant for agricultural and market planning 400

by growers, wholesalers, supermarkets, and exporters for estimating labor, packing, storage, 401

and transportation requirements. Currently, yield estimation is based on the historic 402

performance of an orchard combined with estimates from sample trees in the current year. 403

This results in estimates of varied accuracy from farm to farm and between different apple 404

varieties. The objective of this research is to develop a low-cost but effective computer 405

vision method to predict the apple yield of an orchard up to 4 weeks prior to harvest. 406

This research develops a data collection and deep learning approach that captures 407

video of apples on the tree using an inexpensive smartphone and provides frames from the 408

video to a deep learning neural network for the detection, tracking, and counting of each 409

apple leading to a yield estimation. Empirical results have shown that our method can 410

develop models that detect apples with an AP score of 90.72, track apples with an MT score 411
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of 36.09, and count apples with an F1-score of 94.97%. Our apple counting pipeline paves 412

the way for yield estimation using commodity smartphone technology. Such a system 413

has applications in a wider variety of farm environments where cost and environment 414

constraints prevent the usage of high-cost, larger sensors. 415

The most significant findings are: (1) Video captured by an inexpensive smartphone 416

on the back of an ATV during daylight hours provides the fidelity needed in single frames 417

to detect and track apples on the tree; (2) Combining both the transfer learning and data 418

augmentation techniques had the overall best performance in the apple detection model; 419

and (3) Tracking each detected apple is difficult due to the similarity of different apples. To 420

determine a more accurate count, the age factor (number of contiguous frames in which an 421

apple is tracked) was created and used successfully. 422

Areas of future work include: (1) The use of 3D camera technology, such as the Intel 423

RealSense depth camera, to capture RGB and depth images that will accurately estimate 424

the distance to each pixel and provide a method of determining the size of the apples; (2) 425

Development of a method of mounting the video camera to an ATV for data collection in 426

the orchard; (3) Use data augmentation by changing the color of the apples from red to 427

green or yellow and perform more tests on different varieties of apples; (4) Explore different 428

object detection algorithms like Single Shot Detector (SSD) or Faster R-CNN which might 429

improve the performance of the apple detection model; and (5) Increase the speed of the 430

system and the machine learning models to count apples in the field fast enough to provide 431

real-time feedback to the operator. 432
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